Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing.
نویسندگان
چکیده
We characterize three new fluorescent probes that show both spectral shifts and intensity changes in the presence of aqueous cyanide, allowing for both excitation and fluorescence emission wavelength ratiometric and colorimetric sensing. The relatively high binding constants of the probes for cyanide enables a distinct colorimetric change to be visually observed with as little as 10 microM cyanide. The response of the new probes is based on the ability of the boronic acid group to interact with the CN(-) anion, changing from the neutral form of the boronic acid group R-B(OH)(2) to the anionic R-B(-)(OH)3 form, which is an electron-donating group. The presence of an electron-deficient quaternary heterocyclic nitrogen center and a strong electron-donating amino group in the 6 position on the quinolinium backbone provides for the spectral changes observed upon CN(-) complexation. We have determined the binding constants for the ortho-, meta-, and para-boronic acid probes to be 0.12, 0.17, and 0.14 microM(-3). In addition we have synthesized a control compound that does not contain the boronic acid moiety, allowing for structural comparisons and a rationale for the sensing mechanism to be made. Finally we show that the affinity for monosaccharides, such as glucose or fructose, is relatively low as compared to that for cyanide, enabling the potential detection of cyanide in physiologies up to lethal levels.
منابع مشابه
Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction.
Three water-soluble fluorescent probes have been specifically designed to determine free cyanide concentrations up to physiologically lethal levels, >20 microM. The probes have been designed in such a way as to afford many notable sensing features, which render them unique with regard to signal transduction, photophysical characteristics, and their application to physiological cyanide determina...
متن کاملCyanide-sensitive fluorescent probes
We characterize the response of several boronic acid containing fluorophores, which are widely used for sugar determination, towards aqueous cyanide. In two recent reports we have shown that boronic acid containing fluorophores can be used to sense aqueous cyanide through physiological safeguard levels. In this report we show that our new sensing mechanism is not just specific to our recently r...
متن کاملEngineering a FRET strategy to achieve a ratiometric two-photon fluorescence response with a large emission shift and its application to fluorescence imaging.
Two-photon excitation (TPE) probe-based fluorescence imaging has become one of the most attractive diagnostic techniques to investigate biomolecules and biological events in live cells and tissues. At the current stage most of the TPE-based sensing is reflected by fluorescence intensity changes. Nevertheless the mere altering of intensity could be facilely affected by ambient conditions. On the...
متن کاملCharacterization of a New Series of Fluorescent Probes for Imaging Membrane Order
Visualization and quantification of lipid order is an important tool in membrane biophysics and cell biology, but the availability of environmentally sensitive fluorescent membrane probes is limited. Here, we present the characterization of the novel fluorescent dyes PY3304, PY3174 and PY3184, whose fluorescence properties are sensitive to membrane lipid order. In artificial bilayers, the fluor...
متن کاملQuantitative fluorescence ratio imaging of intralysosomal chloride ions with single excitation/dual maximum emission.
Fluorescence ratio imaging is currently being used to quantitatively detect biologically active molecules in biosystems; however, two excitations of most existing fluorescent ratiometric probes account for cumbersome operating conditions for imaging. Thus, a fluorescent ratiometric probe, 6-methoxyquinolinium-dansyl (MQ-DS), for Cl(-) with single excitation/dual maximum emission has been develo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical biochemistry
دوره 327 1 شماره
صفحات -
تاریخ انتشار 2004